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Trauma Statistics

No.1 cause of

death up to age 5 million death

of 45 in the worldwide each
USA year
0.1 cause o

death from age
15 to 49
worldwide

41 million emergency
department visits in the
USA each year
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Trauma

e Trauma deaths happen quickly

e Initial treatments and decision-
making actions are required in
first minutes or hours after injury

e The ICU has been found to be
one of the sites where medical
errors are most likely to occur

e Early and accurate prediction for
trauma patient outcomes is
essential for ICU decision

making.
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Survival Analysis

 Survival function: the probability of
being alive just before t.

S(t) = P(T* > t)

- Hazard function: the instantaneous
rate of death at time t, given survival

up to time t.
L P<TT<t+AHT >t)  f(t)
Alt) = lim, At ~ S5
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Mortality Prediction for Trauma Patients

Demographic Data,
Disease History

Clinical Notes Died in Hospital

Cured and
Discharged from
Hospital
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BERT(Bidirectional Encoder Representations from
Transformers)
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Pre-training Fine-Tuning

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
Liu, Yinhan, et al. "Roberta: A robustly optimized bert pretraining approach." arXiv preprint arXiv:1907.11692 (2019).
Conneau, Alexis, et al. "Unsupervised cross-lingual representation learning at scale." arXiv preprint arXiv:1911.02116 (2019).
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Self-attention Mechanism
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BERTSurv

Clinical notes [CLS] representation
[CLS] — —{ © Partial Log Likelihood loss
i Survival Analysis /
Token, — Sy Mortality Prediction

Token, — BCE loss
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] — Respiratory rate
BERT Q

Measurements
|

Temperature

— Blood pressure y and n denote endogenous measurements
O and exogenous measurements, respectively

2;(8) = 2o(t) exp(B1Xi1 + - + BpXip) = Ao(t) exp(X] B)
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Dataset
e MIMIC Ill dataset

O Trauma patients are selected using the ICD-9 code (1860 ICU patients)
O Measurements, demographic data, clinical notes, death outcome and time to death
O sample class ratio between class 0 (discharge) and class 1 (death) is 1206 : 654.

® Preprocessing

e I Select 21 most common @ I
Aggregate the » measurement features -
Remove missing value
measurements over » roportion > 0.4
the first 4 hours of : prop ) .
an admission » Select 4 demographic MICE imputation
\_ - features (weight, gender, \_ -
ethnicity and age)

® blood pressure, temperature, respiratory rate, arterial PaO2, hematocrit, WBC, creatinine,
chloride, lactic acid, BUN, sodium (Na), glucose, PaCO2, pH, GCS, heart rate, FiO2,
potassium, calcium, PTT and INR (65% overlap with APACHE lll score)

Data & Statistical

Sciences 1




Notes Preprocessing
Remove formatting,

numbers and non-
’ _ punctuation symbols

clinical notes over

Concatenate the [
the first 4 hours

Remove stopwords (e.g.
a, the, above)

N

Remove punctuations,
morphological affixes
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Mortality Binary Classification (BCE Loss) Confusion Matrix
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Mortality Binary Classification (BCE Loss) ROC

Receiver Operating Characteristic

True Positive Rate

Receiver Operating Characteristic
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Survival Predictions (PLL loss)

BERTSurv Cumulative Hazard BERTSurv Cumulative Hazard
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BERT Visualization

“the endotracheal
tube terminates in
good position
approximately 4 cm
above the carina.”

discharged at hour 85

“left apical cap and left
lateral pneumothorax
suggests severe
chest trauma .”
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Summary

* We propose BERTSurv: a BERT-based deep learning framework to
predict the risk of death for trauma patients.

* We evaluate BERTSurv on the trauma patients in MIMIC 1ll. BERTSurv

achieved a C-index of 0.7 on trauma patients, which outperforms a Cox
model with a C-index of 0.68.

* We extracted patterns in the clinical texts with attention mechanism
visualization and correlated the assigned weights with survival outcomes.
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Thank you!
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